pidigits benchmark N=10,000

Each chart bar shows how many times more Code, one ↓ pidigits program used, compared to the program that used least Code.

These are not the only programs that could be written. These are not the only compilers and interpreters. These are not the only programming languages.

Column × shows how many times more each program used compared to the benchmark program that used least.

    sortsortsort 
  ×   Program Source Code CPU secs Elapsed secs Memory KB Code B ≈ CPU Load
1.0Ruby #4 11.1511.1775,236240  1% 1% 0% 100%
1.0Ruby JRuby #4 17.5912.66650,764240  77% 29% 18% 16%
1.0Python 3 6.156.156,040242  0% 0% 100% 1%
1.0Ruby #3 11.1611.1874,636242  1% 1% 0% 100%
1.0Ruby JRuby #3 17.8312.68644,196242  68% 16% 30% 28%
1.1Python 3 #2 2.402.416,600256  1% 2% 0% 100%
1.1Perl #4 4.374.384,316261  1% 0% 0% 100%
1.3Perl #3 4.464.474,316301  0% 100% 0% 0%
1.3Dart 27.4127.1799,892321  2% 1% 100% 1%
1.4Haskell GHC #4 3.982.716,212341  17% 16% 100% 17%
1.6PHP #4 2.162.174,284384  0% 0% 1% 100%
1.6Perl #2 4.924.924,396385  1% 100% 1% 0%
1.6PHP #5 2.162.164,280394  1% 0% 0% 100%
1.9C gcc 1.731.73932448  1% 1% 3% 100%
1.9Perl 15.8315.846,452452  0% 0% 100% 0%
1.9Racket 27.5227.55118,288453  1% 0% 100% 1%
2.0Ruby #5 3.283.29639,156478  1% 3% 1% 100%
2.0Scala #3 24.1017.071,080,056479  19% 72% 35% 17%
2.0Clojure #3 26.2920.67410,348482  20% 72% 17% 20%
2.1PHP #3 2.242.254,496500  0% 0% 0% 100%
2.1OCaml #2 22.0522.087,744510  0% 0% 100% 0%
2.1Erlang #2 16.0315.6833,568512  2% 1% 1% 99%
2.1Erlang HiPE #2 16.4715.5727,604512  1% 5% 99% 1%
2.1F# Mono 50.8050.8557,788513  1% 28% 21% 52%
2.2Ruby JRuby 29.5220.61751,600518  37% 11% 77% 19%
2.2Ruby 30.6530.70231,480518  0% 100% 1% 0%
2.2Python 3 #3 4.534.546,788521  2% 1% 0% 100%
2.2PHP #2 3.383.394,768537  1% 61% 40% 1%
2.3C gcc #4 2.292.29928541  1% 0% 0% 100%
2.3Erlang HiPE 17.5517.5525,368559  1% 10% 11% 79%
2.3Erlang 16.1116.1221,152559  100% 0% 0% 0%
2.3OCaml 2.812.819,036560  0% 0% 100% 0%
2.4Clojure #2 23.2719.67374,140571  15% 79% 14% 12%
2.5Go #4 3.873.563,672607  1% 4% 5% 100%
2.7Lisp SBCL #2 21.4821.53115,572645  71% 1% 29% 1%
2.8Go #2 3.763.523,668674  4% 48% 7% 51%
2.8C++ g++ #3 2.292.301,656682  1% 0% 0% 100%
2.9Rust 16.6716.684,512691  1% 100% 0% 0%
3.1Hack 7 min7 min59,236735  1% 0% 100% 1%
3.1PHP 8 min8 min6,392736  0% 99% 1% 0%
3.3Pascal Free Pascal #2 2.792.791,044785  1% 1% 0% 100%
3.3Java  19.7218.43348,168800  23% 43% 25% 17%
3.6C# Mono #2 42.5642.6152,208856  0% 27% 2% 73%
3.6OCaml #3 17.2417.277,724869  7% 0% 100% 1%
3.8F# Mono #3 11.0211.0320,720903  0% 0% 1% 100%
3.9Fortran Intel #2 2.292.301,328934  0% 0% 2% 100%
3.9Java  #2 3.173.0323,504938  19% 80% 5% 3%
4.1Fortran Intel #3 1.911.921,324975  0% 2% 1% 100%
4.3C# Mono #3 11.0311.0422,3321026  1% 1% 100% 0%
4.5Lisp SBCL 2.372.379,1881073  0% 2% 2% 100%
4.7Racket #2 2.342.3425,6481122  0% 1% 0% 100%
4.7Scala #4 3.742.9944,8361125  10% 9% 99% 10%
4.8Ada 2005 GNAT 10.8510.862,1561143  0% 1% 100% 1%
5.2Ada 2005 GNAT #2 2.302.302,0721254  0% 1% 100% 3%
6.2OCaml #4 9.309.312,8361481  11% 0% 1% 89%
7.5Clojure #4 8.815.54209,3201794  56% 25% 23% 56%
7.5Java  #4 12.714.7349,1361808  68% 68% 66% 69%
7.6Java  #3 12.714.7453,3721826  68% 67% 68% 69%
8.1Clojure #5 5.574.2477,4681944  28% 62% 29% 15%
13Pascal Free Pascal 29.4429.468203042  99% 1% 1% 1%
Fortran Intel Failed1768
Ruby #2 Failed653
Scala Failed355
"wrong" (different) algorithm / less comparable programs
 Python 3 #4 Failed  248
2.6Scala #2 8.366.64250,164632

 pidigits benchmark : Streaming arbitrary-precision arithmetic

diff program output N = 27 with this output file to check your program is correct before contributing.

We are trying to show the performance of various programming language implementations - so we ask that contributed programs not only give the correct result, but also use the same algorithm to calculate that result.

Each program should use the same step-by-step spigot algorithm to calculate digits of Pi.

Each program should

Programs should adapt the step-by-step algorithm given on pages 4,6 & 7 of Unbounded Spigot Algorithms for the Digits of Pi (156KB pdf). (Not the deliberately obscure version given on page 2.)(Not the Rabinowitz-Wagon algorithm.)

In addition to language specific multiprecision arithmetic, we will accept programs that use GMP.

For more information see Eric W. Weisstein, "Pi Digits." From MathWorld--A Wolfram Web Resource.
http://mathworld.wolfram.com/PiDigits.html

Revised BSD license

  Home   Conclusions   License   Play