/mobile Handheld Friendly website

 fasta benchmark ≈240MB N=25,000,000

Each chart bar shows how many times more Memory, one ↓ fasta program used, compared to the program that used least Memory.

These are not the only programs that could be written. These are not the only compilers and interpreters. These are not the only programming languages.

Column × shows how many times more each program used compared to the benchmark program that used least.

    sortsort sort
  ×   Program Source Code CPU secs Elapsed secs Memory KB Code B ≈ CPU Load
1.0Pascal Free Pascal #4 11.1711.1781112  0% 0% 0% 100%
31Fortran Intel #4 2.692.702441327  0% 0% 0% 100%
45C++ g++ #4 6.246.253601266  1% 0% 1% 100%
46C gcc #4 6.066.073641221  1% 1% 1% 100%
46C gcc 7.267.263641185  1% 0% 1% 100%
64Fortran Intel #3 4.464.475081190  0% 0% 0% 100%
64Fortran Intel 5.985.985081155  0% 1% 1% 100%
98Rust 4.664.667801283  0% 1% 1% 100%
103C++ g++ #2 4.434.448241105  0% 1% 1% 100%
104C++ g++ 4.674.688281033  0% 1% 1% 100%
124Go 6.606.619921036  0% 0% 1% 100%
134C++ g++ #3 4.234.231,0721286  1% 0% 1% 100%
185Lua 44.5944.601,4801049  0% 0% 0% 100%
187Ada 2005 GNAT 8.778.771,4961346  0% 0% 1% 100%
188Ada 2005 GNAT #5 4.054.061,5002186  1% 0% 0% 100%
294Perl #4 267.46267.562,352934  0% 0% 0% 100%
295Perl #2 6 min6 min2,356886  0% 0% 0% 100%
342Haskell GHC #2 3.603.602,736979  2% 0% 1% 100%
391OCaml #3 13.4113.423,1241042  0% 0% 0% 100%
417PHP #3 148.29151.553,3321030  0% 0% 0% 100%
417PHP #2 7 min7 min3,3361006  0% 0% 0% 100%
450PHP #4 63.3663.383,6001110  0% 0% 0% 100%
599Lisp SBCL #3 10.4010.414,7921579  0% 0% 1% 100%
599Lisp SBCL 16.9616.974,7921419  0% 0% 1% 100%
599Lisp SBCL #2 17.2717.274,7921617  0% 0% 1% 100%
630Lisp SBCL #6 7.657.655,0361751  0% 1% 1% 100%
697Python 3 156.10160.135,572792  1% 0% 0% 100%
698Python 3 #2 165.35170.105,580788  1% 0% 0% 100%
939Ruby #5 144.98149.947,512987  1% 1% 0% 100%
1,184JavaScript V8 17.6617.679,472791  0% 1% 0% 100%
1,490Erlang HiPE #2 29.0729.0911,9161164  0% 0% 0% 100%
1,491Erlang HiPE 58.1058.1311,9241039  0% 0% 0% 100%
2,017C# Mono #2 6.496.4916,1361180  1% 1% 1% 100%
2,169F# Mono 8.258.2517,352978  1% 0% 1% 100%
2,542Java  #2 8.378.3720,3321240  1% 1% 1% 100%
2,611Java  #4 5.375.3720,8881507  0% 1% 1% 100%
2,678Racket 49.9349.9621,4241054  0% 1% 1% 100%
3,073Racket #3 17.2217.2324,5841276  0% 1% 0% 100%
3,387Scala 10.7110.7127,0961080  0% 0% 0% 100%
3,401Scala #3 6.466.4727,2041053  0% 1% 1% 100%
5,058JavaScript V8 #2 20.8820.9040,460923  0% 1% 1% 100%
5,161Smalltalk VisualWorks 47.2447.2541,2841315  0% 0% 0% 100%
5,273C# Mono #4 9.449.4542,1801505  0% 1% 0% 100%
6,951Hack #2 68.3268.3555,6081003  1% 0% 0% 100%
7,584Dart 8.978.9860,6721386  1% 1% 1% 100%
7,584Clojure #6 7.657.6660,6721653  0% 1% 1% 100%
8,086Clojure #5 11.6111.6264,6841839  0% 0% 1% 100%
12,505Perl 96.4396.46100,036838  0% 0% 0% 100%
25,223OCaml #6 10.5210.53201,7801161  0% 0% 0% 100%
25,365Ruby #2 203.65203.72202,920732  0% 0% 1% 100%
30,420Ruby #4 149.87155.05243,360904  2% 1% 1% 100%
37,994Hack #3 56.7456.77303,9521029  1% 0% 0% 100%
37,996Hack #4 34.4534.47303,9641109  1% 0% 0% 100%
81,287Ruby JRuby 216.29220.27650,292760  0% 1% 1% 100%
Haskell GHC Bad Output1421
Haskell GHC #4 Bad Output1413
"wrong" (different) algorithm / less comparable programs
62C gcc #2 4.664.664921169
264Haskell GHC #3 13.6013.612,1121408
3,119Perl #5 1.881.8824,9521113

 fasta benchmark : Generate and write random DNA sequences

diff program output N = 1000 with this 10KB output file to check your program is correct before contributing.

We are trying to show the performance of various programming language implementations - so we ask that contributed programs not only give the correct result, but also use the same algorithm to calculate that result.

Each program should

We'll use the generated FASTA file as input for other benchmarks (reverse-complement, k-nucleotide).

Random DNA sequences can be based on a variety of Random Models (554KB pdf). You can use Markov chains or independently distributed nucleotides to generate random DNA sequences online.

Revised BSD license

  Home   Conclusions   License   Play