/mobile Handheld Friendly website

 fannkuch-redux benchmark N=12

Each chart bar shows how many times more Code, one ↓ fannkuch-redux program used, compared to the program that used least Code.

These are not the only programs that could be written. These are not the only compilers and interpreters. These are not the only programming languages.

Column × shows how many times more each program used compared to the benchmark program that used least.

    sortsortsort 
  ×   Program Source Code CPU secs Elapsed secs Memory KB Code B ≈ CPU Load
1.0Ruby JRuby 12 min12 min649,516384  0% 0% 0% 100%
1.0Ruby 39 min39 min7,512384  0% 0% 0% 100%
1.0Python 3 #6 38 min38 min5,416385  1% 0% 0% 100%
1.1PHP #2 49 min49 min3,264441  0% 0% 0% 100%
1.2Perl 38 min38 min1,836457  0% 0% 0% 100%
1.2Scala 90.0790.1023,940459  0% 0% 0% 100%
1.2Lua 35 min35 min1,016462  0% 0% 0% 100%
1.2JavaScript V8 94.6294.657,416463  0% 0% 0% 100%
1.2JavaScript V8 #2 81.9481.977,448472  0% 1% 1% 100%
1.2OCaml #2 90.3890.41760473  0% 0% 0% 100%
1.3PHP 55 min55 min3,316482  0% 0% 0% 100%
1.3Dart #2 84.1384.16171,780495  0% 0% 1% 100%
1.3C gcc 63.1263.14392508  1% 0% 1% 100%
1.3Lisp SBCL #2 161.11161.32119,120513  0% 1% 1% 100%
1.3Java  #2 73.1073.1319,920514  0% 0% 0% 100%
1.4C# Mono 92.5592.5715,076520  0% 0% 0% 100%
1.4OCaml 106.37106.41764524  0% 0% 0% 100%
1.4Hack 15 min15 min55,344532  1% 0% 0% 100%
1.4JavaScript V8 #3 78.8878.907,452539  0% 1% 1% 100%
1.4F# Mono #2 96.4896.5016,068548  0% 0% 1% 100%
1.4F# Mono 173.84174.0120,396551  0% 1% 1% 100%
1.4Haskell GHC 7 min7 min3,504553  0% 1% 1% 100%
1.5C# Mono #2 50.4050.4115,540564  0% 0% 0% 100%
1.5C gcc #3 52.4352.45396567  1% 0% 0% 100%
1.5Fortran Intel 57.6257.64244590  0% 0% 0% 100%
1.5C++ g++ #3 59.0659.08364593  1% 0% 0% 100%
1.6Rust 77.4877.50780601  0% 0% 1% 100%
1.6F# Mono #4 84.0384.0516,108612  0% 0% 0% 100%
1.7Racket 297.40297.4818,820649  0% 0% 1% 100%
1.7Haskell GHC #4 67.8867.912,108658  0% 1% 1% 100%
1.8Lisp SBCL #5 59.5459.5631,960674  2% 0% 2% 100%
2.1Python 3 #2 59 min59 min40,080797  0% 0% 1% 100%
2.1Haskell GHC #2 249.18249.283,564808  0% 1% 1% 100%
2.1Lisp SBCL #3 71.4771.4921,416821  0% 1% 1% 100%
2.2Haskell GHC #5 65.5465.562,364834  0% 1% 1% 100%
2.2Smalltalk VisualWorks 11 min11 min42,580838  0% 0% 0% 100%
2.3Go 71.1871.20984900  0% 0% 1% 100%
2.4Racket #2 272.01272.0820,224903  0% 0% 1% 100%
2.5F# Mono #3 83.6283.6421,192945  0% 1% 1% 100%
2.6OCaml #4 0.0065.0211,4161004  0% 0% 0% 100%
2.6OCaml #3 0.0069.3021,4001017  0% 0% 0% 100%
2.6Scala #2 58.0858.1026,2161017  1% 1% 1% 100%
2.7Pascal Free Pascal 75.3575.378241018  0% 0% 0% 100%
2.7Erlang HiPE 7 min7 min11,6241038  0% 0% 0% 100%
2.8Clojure #2 155.79155.9063,6401088  1% 1% 1% 100%
2.9Racket #3 296.07296.1420,8041096  0% 1% 1% 100%
2.9C# Mono #3 102.75102.7816,2761096  0% 0% 1% 100%
3.0Fortran Intel #3 48.9748.997,5961148  0% 0% 0% 100%
3.0C++ g++ #7 22.6622.673601150  1% 1% 0% 100%
3.0PHP #3 50 min50 min15,5601150  0% 0% 0% 100%
3.1C gcc #4 22.7122.723961183  1% 0% 0% 100%
3.3Java  68.8968.9119,8921282  1% 1% 1% 100%
3.9Clojure #3 71.1571.1860,4001491  0% 0% 1% 100%
4.0Lisp SBCL #4 64.2264.2321,4761518  0% 0% 0% 100%
4.1C gcc #2 55.4555.474241557  0% 1% 1% 100%
5.5Ada 2005 GNAT #3 38.1038.121,9562100  1% 0% 0% 100%
C++ g++ #4 Make Error1439
C++ g++ Failed1059
C++ g++ #5 Make Error1440
Dart Failed531
Haskell GHC #3 Timed Out5 min1153
Hack #2 Timed Out1h 20 min440
Hack #3 Failed1150
Perl #2 Failed565
Python 3 Timed Out1h 00 min1108
"wrong" (different) algorithm / less comparable programs
2.3C++ g++ #6 37.8637.88364894
4.2Lisp SBCL 53.0153.0327,1001607
4.3Java  #3 43.9944.0121,0441633

 fannkuch-redux benchmark : Indexed-access to tiny integer-sequence

diff program output N = 7 with this output file to check your program is correct before contributing.

We are trying to show the performance of various programming language implementations - so we ask that contributed programs not only give the correct result, but also use the same algorithm to calculate that result.

For N = 7 programs should generate these permutations (40KB) - which, incidentally, seem to be in the same order as permutations generated by the Tompkins-Paige algorithm, see pages 150-151 Permutation Generation Methods Robert Sedgewick.

The fannkuch benchmark is defined by programs in Performing Lisp Analysis of the FANNKUCH Benchmark, Kenneth R. Anderson and Duane Rettig.

Each program should

The conjecture is that this maximum count is approximated by n*log(n) when n goes to infinity.

FANNKUCH is an abbreviation for the German word Pfannkuchen, or pancakes, in analogy to flipping pancakes.


Thanks to Oleg Mazurov for insisting on a checksum and providing this helpful description of the approach he took -

Revised BSD license

  Home   Conclusions   License   Play