binary-trees-redux benchmark N=20

Each chart bar shows how many times slower, one ↓ binary-trees-redux program was, compared to the fastest program.

These are not the only programs that could be written. These are not the only compilers and interpreters. These are not the only programming languages.

Column × shows how many times more each program used compared to the benchmark program that used least.

  ×   Program Source Code CPU secs Elapsed secs Memory KB Code B ≈ CPU Load
1.0Lisp SBCL #2 28.2428.29288,316649  0% 0% 1% 100%
1.2Haskell GHC 34.1634.21256,504521  0% 1% 1% 100%
3.4Clojure 97.0097.09248,304661  0% 1% 1% 100%
3.7Java  #2 105.33105.41169,572607  1% 1% 0% 100%
3.8Clojure #6 106.84106.93243,860709  0% 1% 1% 100%
3.8Scala #4 106.93107.01171,448498  1% 1% 0% 100%
Ruby JRuby Failed412
missing benchmark programs
Ada 2005 GNAT No program
C gcc No program
C# Mono No program
C++ g++ No program
Dart No program
Erlang HiPE No program
F# Mono No program
Fortran Intel No program
Go No program
Hack No program
JavaScript V8 No program
Lua No program
OCaml No program
Pascal Free Pascal No program
Perl No program
PHP No program
Python 3 No program
Racket No program
Ruby No program
Rust No program
Smalltalk VisualWorks No program

 binary-trees-redux benchmark : Allocate and deallocate many many binary trees

You can write your own program for this task and contribute to the benchmarks game by following these general instructions.

More specifically:

The binary-trees-redux benchmark is another simplistic adaptation of Hans Boehm's GCBench, which in turn was adapted from a benchmark by John Ellis and Pete Kovac.

Heap size has been limited for each program, to 8KB more than that program needs to complete the task.

Revised BSD license

  Home   Conclusions   License   Play