/mobile Handheld Friendly website

 performance measurements

Each table row shows performance measurements for this C gcc program with a particular command-line input value N.

 N  CPU secs Elapsed secs Memory KB Code B ≈ CPU Load
2,0980.110.11?3066  0% 0% 100% 0%

Read the ↓ make, command line, and program output logs to see how this program was run.

Read meteor-contest benchmark to see what this program should do.

 notes

gcc version 4.8.1 (Ubuntu/Linaro 4.8.1-10ubuntu8)

 meteor-contest C gcc program source code

/* The Computer Language Benchmarks Game
 * http://benchmarksgame.alioth.debian.org/
 *
 * contributed by Christian Vosteen
 */

#include <stdlib.h>
#include <stdio.h>
#define TRUE 1
#define FALSE 0

/* The board is a 50 cell hexagonal pattern.  For    . . . . .
 * maximum speed the board will be implemented as     . . . . .
 * 50 bits, which will fit into a 64 bit long long   . . . . .
 * int.                                               . . . . .
 *                                                   . . . . .
 * I will represent 0's as empty cells and 1's        . . . . .
 * as full cells.                                    . . . . .
 *                                                    . . . . .
 *                                                   . . . . .
 *                                                    . . . . .
 */

unsigned long long board = 0xFFFC000000000000ULL;

/* The puzzle pieces must be specified by the path followed
 * from one end to the other along 12 hexagonal directions.
 *
 *   Piece 0   Piece 1   Piece 2   Piece 3   Piece 4
 *                   
 *  O O O O    O   O O   O O O     O O O     O   O
 *         O    O O           O       O       O O
 *                           O         O         O
 *
 *   Piece 5   Piece 6   Piece 7   Piece 8   Piece 9
 *
 *    O O O     O O       O O     O O        O O O O
 *       O O       O O       O       O O O        O
 *                  O       O O
 *
 * I had to make it 12 directions because I wanted all of the
 * piece definitions to fit into the same size arrays.  It is
 * not possible to define piece 4 in terms of the 6 cardinal
 * directions in 4 moves.
 */

#define E     0
#define ESE   1
#define SE    2
#define S     3
#define SW    4
#define WSW   5
#define W     6
#define WNW   7
#define NW    8
#define N     9
#define NE    10
#define ENE   11
#define PIVOT 12

char piece_def[10][4] = {
   {  E,  E,  E, SE},
   { SE,  E, NE,  E},
   {  E,  E, SE, SW},
   {  E,  E, SW, SE},
   { SE,  E, NE,  S},
   {  E,  E, SW,  E},
   {  E, SE, SE, NE},
   {  E, SE, SE,  W},
   {  E, SE,  E,  E},
   {  E,  E,  E, SW}
};

 
/* To minimize the amount of work done in the recursive solve function below,
 * I'm going to allocate enough space for all legal rotations of each piece
 * at each position on the board. That's 10 pieces x 50 board positions x
 * 12 rotations.  However, not all 12 rotations will fit on every cell, so
 * I'll have to keep count of the actual number that do.
 * The pieces are going to be unsigned long long ints just like the board so
 * they can be bitwise-anded with the board to determine if they fit.
 * I'm also going to record the next possible open cell for each piece and
 * location to reduce the burden on the solve function.
 */
unsigned long long pieces[10][50][12];
int piece_counts[10][50];
char next_cell[10][50][12];

/* Returns the direction rotated 60 degrees clockwise */
char rotate(char dir) {
   return (dir + 2) % PIVOT;
}

/* Returns the direction flipped on the horizontal axis */
char flip(char dir) {
   return (PIVOT - dir) % PIVOT;
}


/* Returns the new cell index from the specified cell in the
 * specified direction.  The index is only valid if the
 * starting cell and direction have been checked by the
 * out_of_bounds function first.
 */
char shift(char cell, char dir) {
   switch(dir) {
      case E:
         return cell + 1;
      case ESE:
         if((cell / 5) % 2)
            return cell + 7;
         else
            return cell + 6;
      case SE:
         if((cell / 5) % 2)
            return cell + 6;
         else
            return cell + 5;
      case S:
         return cell + 10;
      case SW:
         if((cell / 5) % 2)
            return cell + 5;
         else
            return cell + 4;
      case WSW:
         if((cell / 5) % 2)
            return cell + 4;
         else
            return cell + 3;
      case W:
         return cell - 1;
      case WNW:
         if((cell / 5) % 2)
            return cell - 6;
         else
            return cell - 7;
      case NW:
         if((cell / 5) % 2)
            return cell - 5;
         else
            return cell - 6;
      case N:
         return cell - 10;
      case NE:
         if((cell / 5) % 2)
            return cell - 4;
         else
            return cell - 5;
      case ENE:
         if((cell / 5) % 2)
            return cell - 3;
         else
            return cell - 4;
      default:
         return cell;
   }
}

/* Returns wether the specified cell and direction will land outside
 * of the board.  Used to determine if a piece is at a legal board
 * location or not.
 */
char out_of_bounds(char cell, char dir) {
   char i;
   switch(dir) {
      case E:
         return cell % 5 == 4;
      case ESE:
         i = cell % 10;   
         return i == 4 || i == 8 || i == 9 || cell >= 45;
      case SE:
         return cell % 10 == 9 || cell >= 45;
      case S:
         return cell >= 40;
      case SW:
         return cell % 10 == 0 || cell >= 45;
      case WSW:
         i = cell % 10;   
         return i == 0 || i == 1 || i == 5 || cell >= 45;
      case W:
         return cell % 5 == 0;
      case WNW:
         i = cell % 10;   
         return i == 0 || i == 1 || i == 5 || cell < 5;
      case NW:
         return cell % 10 == 0 || cell < 5;
      case N:
         return cell < 10;
      case NE:
         return cell % 10 == 9 || cell < 5;
      case ENE:
         i = cell % 10;   
         return i == 4 || i == 8 || i == 9 || cell < 5;
      default:
         return FALSE;
   }
}

/* Rotate a piece 60 degrees clockwise */
void rotate_piece(int piece) {
   int i;
   for(i = 0; i < 4; i++)
      piece_def[piece][i] = rotate(piece_def[piece][i]);
}

/* Flip a piece along the horizontal axis */
void flip_piece(int piece) {
   int i;
   for(i = 0; i < 4; i++)
      piece_def[piece][i] = flip(piece_def[piece][i]);
}

/* Convenience function to quickly calculate all of the indices for a piece */
void calc_cell_indices(char *cell, int piece, char index) {
   cell[0] = index;
   cell[1] = shift(cell[0], piece_def[piece][0]);
   cell[2] = shift(cell[1], piece_def[piece][1]);
   cell[3] = shift(cell[2], piece_def[piece][2]);
   cell[4] = shift(cell[3], piece_def[piece][3]);
}

/* Convenience function to quickly calculate if a piece fits on the board */
int cells_fit_on_board(char *cell, int piece) {
   return (!out_of_bounds(cell[0], piece_def[piece][0]) &&
         !out_of_bounds(cell[1], piece_def[piece][1]) && 
         !out_of_bounds(cell[2], piece_def[piece][2]) && 
         !out_of_bounds(cell[3], piece_def[piece][3]));
}

/* Returns the lowest index of the cells of a piece.
 * I use the lowest index that a piece occupies as the index for looking up
 * the piece in the solve function.
 */
char minimum_of_cells(char *cell) {
   char minimum = cell[0];
   minimum = cell[1] < minimum ? cell[1] : minimum;
   minimum = cell[2] < minimum ? cell[2] : minimum;
   minimum = cell[3] < minimum ? cell[3] : minimum;
   minimum = cell[4] < minimum ? cell[4] : minimum;
   return minimum;
}

/* Calculate the lowest possible open cell if the piece is placed on the board.
 * Used to later reduce the amount of time searching for open cells in the
 * solve function.
 */
char first_empty_cell(char *cell, char minimum) {
   char first_empty = minimum;
   while(first_empty == cell[0] || first_empty == cell[1] ||
         first_empty == cell[2] || first_empty == cell[3] ||
         first_empty == cell[4])
      first_empty++;
   return first_empty;
}

/* Generate the unsigned long long int that will later be anded with the
 * board to determine if it fits.
 */
unsigned long long bitmask_from_cells(char *cell) {
   unsigned long long piece_mask = 0ULL;
   int i;
   for(i = 0; i < 5; i++)
      piece_mask |= 1ULL << cell[i];
   return piece_mask;
}

/* Record the piece and other important information in arrays that will
 * later be used by the solve function.
 */
void record_piece(int piece, int minimum, char first_empty,
      unsigned long long piece_mask) {
   pieces[piece][minimum][piece_counts[piece][minimum]] = piece_mask;
   next_cell[piece][minimum][piece_counts[piece][minimum]] = first_empty;
   piece_counts[piece][minimum]++;         
}


/* Fill the entire board going cell by cell.  If any cells are "trapped"
 * they will be left alone.
 */
void fill_contiguous_space(char *board, int index) {
   if(board[index] == 1)
      return;
   board[index] = 1;
   if(!out_of_bounds(index, E))
      fill_contiguous_space(board, shift(index, E));   
   if(!out_of_bounds(index, SE))
      fill_contiguous_space(board, shift(index, SE));   
   if(!out_of_bounds(index, SW))
      fill_contiguous_space(board, shift(index, SW));   
   if(!out_of_bounds(index, W))
      fill_contiguous_space(board, shift(index, W));   
   if(!out_of_bounds(index, NW))
      fill_contiguous_space(board, shift(index, NW));   
   if(!out_of_bounds(index, NE))
      fill_contiguous_space(board, shift(index, NE));   
}


/* To thin the number of pieces, I calculate if any of them trap any empty
 * cells at the edges.  There are only a handful of exceptions where the
 * the board can be solved with the trapped cells.  For example:  piece 8 can
 * trap 5 cells in the corner, but piece 3 can fit in those cells, or piece 0
 * can split the board in half where both halves are viable.
 */
int has_island(char *cell, int piece) {
   char temp_board[50];
   char c;
   int i;
   for(i = 0; i < 50; i++)
      temp_board[i] = 0;
   for(i = 0; i < 5; i++)
      temp_board[((int)cell[i])] = 1;
   i = 49;
   while(temp_board[i] == 1)
      i--;
   fill_contiguous_space(temp_board, i);
   c = 0;
   for(i = 0; i < 50; i++)
      if(temp_board[i] == 0)
         c++;
   if(c == 0 || (c == 5 && piece == 8) || (c == 40 && piece == 8) ||
         (c % 5 == 0 && piece == 0))
      return FALSE;
   else
      return TRUE;   
}


/* Calculate all six rotations of the specified piece at the specified index.
 * We calculate only half of piece 3's rotations.  This is because any solution
 * found has an identical solution rotated 180 degrees.  Thus we can reduce the
 * number of attempted pieces in the solve algorithm by not including the 180-
 * degree-rotated pieces of ONE of the pieces.  I chose piece 3 because it gave
 * me the best time ;)
 */
 void calc_six_rotations(char piece, char index) {
   char rotation, cell[5];
   char minimum, first_empty;
   unsigned long long piece_mask;

   for(rotation = 0; rotation < 6; rotation++) {
      if(piece != 3 || rotation < 3) { 
         calc_cell_indices(cell, piece, index);
         if(cells_fit_on_board(cell, piece) && !has_island(cell, piece)) {
            minimum = minimum_of_cells(cell);
            first_empty = first_empty_cell(cell, minimum);
            piece_mask = bitmask_from_cells(cell);
            record_piece(piece, minimum, first_empty, piece_mask);
         }
      }
      rotate_piece(piece);
   }
}

/* Calculate every legal rotation for each piece at each board location. */
void calc_pieces(void) {
   char piece, index;

   for(piece = 0; piece < 10; piece++) {
      for(index = 0; index < 50; index++) {
         calc_six_rotations(piece, index);
         flip_piece(piece);
         calc_six_rotations(piece, index);
      }
   }
}



/* Calculate all 32 possible states for a 5-bit row and all rows that will
 * create islands that follow any of the 32 possible rows.  These pre-
 * calculated 5-bit rows will be used to find islands in a partially solved
 * board in the solve function.
 */
#define ROW_MASK 0x1F
#define TRIPLE_MASK 0x7FFF
char all_rows[32] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
      17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31};
int bad_even_rows[32][32];
int bad_odd_rows[32][32];
int bad_even_triple[32768];
int bad_odd_triple[32768];

int rows_bad(char row1, char row2, int even) {
   /* even is referring to row1 */
   int i, in_zeroes, group_okay;
   char block, row2_shift;
   /* Test for blockages at same index and shifted index */
   if(even)
      row2_shift = ((row2 << 1) & ROW_MASK) | 0x01;
   else
      row2_shift = (row2 >> 1) | 0x10;
   block = ((row1 ^ row2) & row2) & ((row1 ^ row2_shift) & row2_shift);
   /* Test for groups of 0's */
   in_zeroes = FALSE;
   group_okay = FALSE;
   for(i = 0; i < 5; i++) {
      if(row1 & (1 << i)) {
         if(in_zeroes) {
            if(!group_okay)
               return TRUE;
            in_zeroes = FALSE;
            group_okay = FALSE;
         }
      } else {
         if(!in_zeroes)
            in_zeroes = TRUE;
         if(!(block & (1 << i)))
            group_okay = TRUE;
      }
   }
   if(in_zeroes)
      return !group_okay;
   else
      return FALSE;
}

/* Check for cases where three rows checked sequentially cause a false
 * positive.  One scenario is when 5 cells may be surrounded where piece 5
 * or 7 can fit.  The other scenario is when piece 2 creates a hook shape.
 */
int triple_is_okay(char row1, char row2, char row3, int even) {
   if(even) {
      /* There are four cases:
       * row1: 00011  00001  11001  10101
       * row2: 01011  00101  10001  10001
       * row3: 011??  00110  ?????  ?????
       */
      return ((row1 == 0x03) && (row2 == 0x0B) && ((row3 & 0x1C) == 0x0C)) ||
            ((row1 == 0x01) && (row2 == 0x05) && (row3 == 0x06)) ||
            ((row1 == 0x19) && (row2 == 0x11)) ||
            ((row1 == 0x15) && (row2 == 0x11));
   } else {
      /* There are two cases:
       * row1: 10011  10101
       * row2: 10001  10001
       * row3: ?????  ?????
       */
      return ((row1 == 0x13) && (row2 == 0x11)) ||
            ((row1 == 0x15) && (row2 == 0x11));
   }
}


void calc_rows(void) {
   int row1, row2, row3;
   int result1, result2;
   for(row1 = 0; row1 < 32; row1++) {
      for(row2 = 0; row2 < 32; row2++) {
         bad_even_rows[row1][row2] = rows_bad(row1, row2, TRUE);
         bad_odd_rows[row1][row2] = rows_bad(row1, row2, FALSE);
      }
   }
   for(row1 = 0; row1 < 32; row1++) {
      for(row2 = 0; row2 < 32; row2++) {
         for(row3 = 0; row3 < 32; row3++) {
            result1 = bad_even_rows[row1][row2];
            result2 = bad_odd_rows[row2][row3];
            if(result1 == FALSE && result2 == TRUE
                  && triple_is_okay(row1, row2, row3, TRUE))
               bad_even_triple[row1+(row2*32)+(row3*1024)] = FALSE;
            else
               bad_even_triple[row1+(row2*32)+(row3*1024)] = result1 || result2;

            result1 = bad_odd_rows[row1][row2];
            result2 = bad_even_rows[row2][row3];
            if(result1 == FALSE && result2 == TRUE
                  && triple_is_okay(row1, row2, row3, FALSE))
               bad_odd_triple[row1+(row2*32)+(row3*1024)] = FALSE;
            else
               bad_odd_triple[row1+(row2*32)+(row3*1024)] = result1 || result2;
         }
      }
   }
}



/* Calculate islands while solving the board.
 */
int boardHasIslands(char cell) {
   /* Too low on board, don't bother checking */
   if(cell >= 40)
      return FALSE;
   int current_triple = (board >> ((cell / 5) * 5)) & TRIPLE_MASK;
   if((cell / 5) % 2)
      return bad_odd_triple[current_triple];
   else
      return bad_even_triple[current_triple];
}


/* The recursive solve algorithm.  Try to place each permutation in the upper-
 * leftmost empty cell.  Mark off available pieces as it goes along.
 * Because the board is a bit mask, the piece number and bit mask must be saved
 * at each successful piece placement.  This data is used to create a 50 char
 * array if a solution is found.
 */
short avail = 0x03FF;
char sol_nums[10];
unsigned long long sol_masks[10];
signed char solutions[2100][50];
int solution_count = 0;
int max_solutions = 2100;

void record_solution(void) {
   int sol_no, index;
   unsigned long long sol_mask;
   for(sol_no = 0; sol_no < 10; sol_no++) {
      sol_mask = sol_masks[sol_no];
      for(index = 0; index < 50; index++) {
         if(sol_mask & 1ULL) {
            solutions[solution_count][index] = sol_nums[sol_no];
            /* Board rotated 180 degrees is a solution too! */
            solutions[solution_count+1][49-index] = sol_nums[sol_no];
         }
         sol_mask = sol_mask >> 1;
      }
   }
   solution_count += 2;
}

void solve(int depth, int cell) {
   int piece, rotation, max_rots;
   unsigned long long *piece_mask;
   short piece_no_mask;
   
   if(solution_count >= max_solutions)
      return;

   while(board & (1ULL << cell))
      cell++;

   for(piece = 0; piece < 10; piece++) {
      piece_no_mask = 1 << piece;
      if(!(avail & piece_no_mask))
         continue;
      avail ^= piece_no_mask;
      max_rots = piece_counts[piece][cell];
      piece_mask = pieces[piece][cell];
      for(rotation = 0; rotation < max_rots; rotation++) {
         if(!(board & *(piece_mask + rotation))) {
            sol_nums[depth] = piece;
            sol_masks[depth] = *(piece_mask + rotation);
            if(depth == 9) {
               /* Solution found!!!!!11!!ONE! */
               record_solution();
               avail ^= piece_no_mask;
               return;
            }
            board |= *(piece_mask + rotation);
            if(!boardHasIslands(next_cell[piece][cell][rotation]))
               solve(depth + 1, next_cell[piece][cell][rotation]);
            board ^= *(piece_mask + rotation);
         }
      }
      avail ^= piece_no_mask;
   }
}


/* qsort comparator - used to find first and last solutions */
int solution_sort(const void *elem1, const void *elem2) {
   signed char *char1 = (signed char *) elem1;
   signed char *char2 = (signed char *) elem2;
   int i = 0;
   while(i < 50 && char1[i] == char2[i])
      i++;
   return char1[i] - char2[i];
}


/* pretty print a board in the specified hexagonal format */
void pretty(signed char *b) {
   int i;
   for(i = 0; i < 50; i += 10) {
      printf("%c %c %c %c %c \n %c %c %c %c %c \n", b[i]+'0', b[i+1]+'0',
            b[i+2]+'0', b[i+3]+'0', b[i+4]+'0', b[i+5]+'0', b[i+6]+'0',
            b[i+7]+'0', b[i+8]+'0', b[i+9]+'0');
   }
   printf("\n");
}

int main(int argc, char **argv) {
   if(argc > 1)
      max_solutions = atoi(argv[1]);
   calc_pieces();
   calc_rows();
   solve(0, 0);
   printf("%d solutions found\n\n", solution_count);
   qsort(solutions, solution_count, 50 * sizeof(signed char), solution_sort);
   pretty(solutions[0]);
   pretty(solutions[solution_count-1]);
   return 0;
}

 make, command-line, and program output logs

Sun, 20 Oct 2013 20:15:39 GMT

MAKE:
/usr/bin/gcc -pipe -Wall -O3 -fomit-frame-pointer -march=native  meteor.c -o meteor.gcc_run 
rm meteor.c
0.72s to complete and log all make actions

COMMAND LINE:
./meteor.gcc_run 2098

PROGRAM OUTPUT:
2098 solutions found

0 0 0 0 1 
 2 2 2 0 1 
2 6 6 1 1 
 2 6 1 5 5 
8 6 5 5 5 
 8 6 3 3 3 
4 8 8 9 3 
 4 4 8 9 3 
4 7 4 7 9 
 7 7 7 9 9 

9 9 9 9 8 
 9 6 6 8 5 
6 6 8 8 5 
 6 8 2 5 5 
7 7 7 2 5 
 7 4 7 2 0 
1 4 2 2 0 
 1 4 4 0 3 
1 4 0 0 3 
 1 1 3 3 3 

Revised BSD license

  Home   Conclusions   License   Play