thread-ring benchmark N=50,000,000

Each chart bar shows how many times more Memory, one ↓ thread-ring program used, compared to the program that used least Memory.

These are not the only programs that could be written. These are not the only compilers and interpreters. These are not the only programming languages.

Column × shows how many times more each program used compared to the benchmark program that used least.

    sortsort sort
  ×   Program Source Code CPU secs Elapsed secs Memory KB Code B ≈ CPU Load
1.0OCaml #2 6 min288.47692350  5% 51% 50% 5%
3.5C gcc #2 5 min294.272,424575  25% 19% 19% 25%
3.8C gcc #3 155.03155.082,596916  100% 1% 1% 0%
4.2Go #5 11.4811.482,884405  1% 0% 100% 1%
4.3OCaml #3 6 min271.733,004296  44% 10% 10% 45%
4.4C++ g++ 6 min296.053,016636  30% 29% 24% 24%
5.1Haskell GHC 9.909.053,500306  100% 3% 4% 3%
6.6C++ g++ #5 8 min155.444,556652  88% 88% 87% 86%
9.1Python 3 #2 8 min6 min6,268288  20% 20% 33% 33%
9.5C++ g++ #4 8 min147.216,604572  89% 89% 88% 88%
11C gcc 5 min277.547,504487  28% 31% 31% 30%
11C++ g++ #2 5 min288.547,512588  21% 20% 24% 24%
11OCaml 11 min8 min7,608282  47% 14% 13% 47%
18Ada 2005 GNAT #3 7 min5 min12,776727  5% 48% 49% 5%
21Ada 2005 GNAT #4 7 min5 min14,828960  16% 35% 34% 16%
23Ruby #2 29 min20 min15,584215  33% 25% 26% 35%
23Ruby 9 min7 min15,592331  22% 32% 33% 21%
24Ada 2005 GNAT 17 min9 min16,812602  40% 40% 39% 40%
24Ada 2005 GNAT #2 10 min7 min16,832560  31% 28% 28% 31%
30C# Mono 14 min7 min20,496476  45% 46% 46% 47%
32Java  #7 8 min6 min21,876473  26% 27% 27% 26%
34C# Mono #2 13 min9 min23,312591  32% 34% 32% 31%
47F# Mono #3 19.8619.8632,308329  43% 1% 1% 58%
60F# Mono #2 13 min5 min41,340555  66% 67% 67% 67%
71Racket 169.30169.2848,924262  0% 1% 100% 0%
414Java  #3 8 min6 min286,340530  26% 26% 26% 25%
548Clojure 142.86125.55378,956348  30% 26% 26% 29%
551Clojure #2 138.16120.48381,192299  31% 26% 26% 29%
609Perl #3 14 min11 min421,420489  55% 6% 6% 56%
1,764Lisp SBCL #2 8 min6 min1,220,716571  28% 31% 30% 26%
1,767Lisp SBCL 7 min5 min1,222,756618  29% 25% 24% 29%
C gcc #4 Timed Out5 min761
Erlang HiPE Failed273
Pascal Free Pascal Make Error523
Perl Timed Out1h 00 min353
Ruby JRuby #2 Failed228
Ruby JRuby Failed342
Scala Failed296
"wrong" (different) algorithm / less comparable programs
6.4Python 3 #3 11.4511.454,416270
9.5C++ g++ #3 9.229.236,600726
21Ada 2005 GNAT #5 0.580.5514,8281476
33F# Mono #4 2.202.2022,756267
148Java  #4 40.6536.88102,268894
149Java  #5 21.1319.14103,060432
331Java  #2 5.415.35228,892693
402Java  #6 1.281.32278,428543
missing benchmark programs
Dart No program
Fortran Intel No program
PHP No program
Rust No program

 thread-ring benchmark : Switch from thread to thread passing one token

diff program output N = 1000 with this output file to check your program is correct before contributing.

Each program should create and keep alive 503 pre-emptive threads, explicity or implicitly linked in a ring, and pass a token between one thread and the next thread at least N times.

We are trying to show the performance of various programming language implementations - so we ask that contributed programs not only give the correct result, but also use the same algorithm to calculate that result.

Each program should

Similar benchmarks are described in Performance Measurements of Threads in Java and Processes in Erlang, 1998; and A Benchmark Test for BCPL Style Coroutines, 2004. (Note: 'Benchmarks that may seem to be concurrent are often sequential. The estone benchmark, for instance, is entirely sequential. So is also the most common implementation of the "ring benchmark'; usually one process is active, while the others wait in a receive statement.') For some language implementations increasing the number of threads quickly results in Death by Concurrency.

Programs may use pre-emptive kernel threads or pre-emptive lightweight threads; but programs that use non pre-emptive threads (coroutines, cooperative threads) and any programs that use custom schedulers, will be listed as interesting alternative implementations. Briefly say what concurrency technique is used in the program header comment.

Revised BSD license

  Home   Conclusions   License   Play