spectral-norm benchmark N=5,500

Each chart bar shows how many times more Memory, one ↓ spectral-norm program used, compared to the program that used least Memory.

These are not the only programs that could be written. These are not the only compilers and interpreters. These are not the only programming languages.

Column × shows how many times more each program used compared to the benchmark program that used least.

    sortsort sort
  ×   Program Source Code CPU secs Elapsed secs Memory KB Code B ≈ CPU Load
1.0Pascal Free Pascal 15.7615.778423  1% 1% 0% 100%
46C gcc 20.7320.74364383  0% 100% 1% 1%
48C gcc #4 10.672.683801139  100% 100% 100% 100%
81C gcc #5 7.901.99644569  100% 100% 100% 100%
81C gcc #3 15.743.95644463  100% 100% 100% 100%
81C++ g++ #8 13.533.406441278  100% 100% 100% 100%
98Fortran Intel #2 7.857.86780513  1% 1% 2% 100%
109C++ g++ 28.4628.48872452  0% 100% 1% 1%
116C++ g++ #6 7.972.019241044  100% 100% 100% 100%
116C++ g++ #5 7.972.009241044  100% 100% 100% 100%
129Go 20.8120.811,032411  0% 1% 98% 3%
152Ada 2005 GNAT 21.7621.761,212710  1% 0% 1% 100%
162Go #3 15.703.951,292536  99% 99% 99% 99%
162Fortran Intel #3 7.912.001,296638  99% 99% 99% 99%
162Go #2 15.764.111,296668  96% 96% 96% 96%
165Fortran Intel 7.932.001,316568  99% 99% 100% 99%
178Haskell GHC #4 15.704.041,420984  97% 97% 97% 98%
202Ada 2005 GNAT #3 15.723.981,6161702  99% 99% 99% 99%
208OCaml #2 18.8518.861,660377  1% 0% 0% 100%
235Ada 2005 GNAT #4 9.402.401,8802762  99% 98% 97% 98%
385Perl #2 17 min17 min3,076343  99% 0% 0% 1%
404OCaml #3 18.245.273,232938  87% 97% 95% 85%
473Haskell GHC #2 106.4836.423,784403  63% 65% 65% 100%
483Perl 229.81229.893,860333  96% 0% 0% 4%
542Python 3 #8 17 min17 min4,336449  0% 0% 1% 100%
585Rust #2 32.8932.904,676525  0% 0% 100% 1%
586PHP #2 6 min6 min4,688397  0% 0% 1% 100%
601Rust 32.8932.904,808492  0% 1% 100% 0%
627Python 3 #6 15 min15 min5,012328  0% 9% 91% 1%
680Ruby #4 12 min12 min5,436326  99% 0% 0% 1%
848Perl #4 212.5754.356,780551  97% 98% 98% 99%
990Ruby 10 min10 min7,920292  0% 0% 0% 100%
997Perl #3 17 min269.367,976846  100% 99% 99% 100%
1,103Lisp SBCL 23.7823.798,824625  1% 1% 0% 100%
1,797PHP #3 7 min108.8614,3721193  99% 99% 99% 99%
1,805Erlang HiPE #2 45.0111.5114,436747  99% 98% 98% 98%
1,864Erlang HiPE 56.6856.6914,912507  100% 0% 0% 0%
1,906Dart 22.0421.9415,244457  0% 1% 100% 1%
2,058Java  #2 16.564.2916,460950  96% 96% 99% 96%
2,112Racket 31.1431.1316,892446  0% 1% 100% 0%
2,121Java  16.5016.4416,968514  0% 1% 100% 0%
2,238Racket #2 28.1728.1717,904532  0% 0% 9% 92%
2,317Scala 16.0415.9718,536404  99% 1% 0% 2%
2,380C# Mono #2 31.608.0919,0361063  98% 97% 98% 98%
2,401Lisp SBCL #2 15.974.1919,208906  96% 95% 95% 97%
2,435C# Mono 29.4729.4819,476459  1% 1% 0% 100%
2,443Racket #3 22.946.0019,540627  95% 95% 98% 95%
2,491Scala #2 16.614.3519,928720  94% 95% 99% 94%
2,542Lisp SBCL #3 23.456.0920,336883  97% 96% 97% 97%
2,747F# Mono #2 31.489.6821,972852  78% 82% 83% 83%
3,364Ruby #3 10 min166.2926,908828  97% 97% 97% 97%
3,783Python 3 #5 17 min258.4230,260437  99% 99% 99% 99%
5,665Clojure #6 42.3111.4645,320808  97% 90% 91% 91%
5,821Clojure #7 42.7611.5646,568762  91% 95% 94% 90%
6,091Clojure #8 42.1811.2448,724918  93% 93% 91% 99%
75,652Ruby JRuby #4 297.72292.36605,212326  18% 38% 33% 15%
76,445Ruby JRuby #2 12 min197.76611,560776  98% 98% 98% 98%
78,371Ruby JRuby 6 min6 min626,968292  23% 22% 23% 35%
Scala #3 Failed982
Scala #4 Failed1006
"wrong" (different) algorithm / less comparable programs
80C++ g++ #2 16.644.196401330
116C++ g++ #7 8.072.039241283
29,601C gcc #2 2.282.28236,808669
59,971Python 3 #2 12.1512.16479,764233
119,669Python 3 #3 101.30101.81957,348379

 spectral-norm benchmark : Eigenvalue using the power method

You can write your own program for this task and contribute to the benchmarks game by following these general instructions.

More specifically:

diff program output N = 100 with this output file to check your program is correct before contributing.

We are trying to show the performance of various programming language implementations - so we ask that contributed programs not only give the correct result, but also use the same algorithm to calculate that result.

Each program should calculate the spectral norm of an infinite matrix A, with entries a11=1, a12=1/2, a21=1/3, a13=1/4, a22=1/5, a31=1/6, etc

Each program must implement 4 separate functions / procedures / methods like the C# program.

For more information see challenge #3 in Eric W. Weisstein, "Hundred-Dollar, Hundred-Digit Challenge Problems" and "Spectral Norm".

From MathWorld--A Wolfram Web Resource.
http://mathworld.wolfram.com/Hundred-DollarHundred-DigitChallengeProblems.html
http://mathworld.wolfram.com/SpectralNorm.html

Thanks to Sebastien Loisel for this benchmark.

Revised BSD license

  Home   Conclusions   License   Play