k-nucleotide benchmark ≈240MB N=25,000,000

Each chart bar shows how many times slower, one ↓ k-nucleotide program was, compared to the fastest program.

These are not the only programs that could be written. These are not the only compilers and interpreters. These are not the only programming languages.

Column × shows how many times more each program used compared to the benchmark program that used least.

     sortsortsort
  ×   Program Source Code CPU secs Elapsed secs Memory KB Code B ≈ CPU Load
1.0Ada 2005 GNAT #2 19.298.91271,5044865  22% 49% 80% 67%
1.2C++ g++ #3 23.607.22132,7401252  78% 77% 76% 98%
1.4Rust 27.309.40155,7482078  79% 80% 75% 57%
1.8Java  #7 35.2710.611,199,1841844  79% 78% 90% 88%
1.9C gcc #9 36.5812.35131,9041535  37% 71% 95% 94%
2.1Clojure #5 39.8515.07375,7842723  69% 82% 79% 36%
2.2C gcc #7 42.1515.39164,3242280  42% 42% 100% 91%
2.3Java  #2 44.6212.83518,0361602  94% 85% 84% 85%
2.3Java  #3 44.7912.87517,6321630  95% 86% 84% 84%
2.4Pascal Free Pascal #2 46.2246.24130,0682383  0% 100% 1% 1%
2.4PHP 46.7441.46246,9721036  91% 13% 4% 6%
2.6Go #5 50.6719.02274,2121268  93% 83% 45% 46%
2.9C gcc #6 55.4017.53168,4362439  97% 94% 62% 64%
3.1Java  #4 59.5258.48196,4041873  2% 2% 100% 1%
3.4F# Mono #4 64.7623.701,144,3121505  54% 57% 97% 67%
3.4F# Mono #3 66.1028.521,145,9441111  68% 74% 46% 46%
3.5Lisp SBCL #4 67.3667.43114,5082272  0% 0% 100% 1%
3.5Lisp SBCL #5 67.6667.73115,0402301  93% 2% 6% 0%
3.5Fortran Intel #2 68.1027.09172,0642079  37% 54% 83% 79%
3.7C# Mono #7 71.7624.59505,8721822  66% 68% 94% 65%
4.0Haskell GHC #2 76.8120.49268,8201965  97% 93% 94% 92%
4.0Java  #5 77.0832.87209,1482211  54% 69% 24% 89%
5.2Clojure #7 99.9831.11993,3763030  82% 72% 81% 89%
5.5Haskell GHC #3 106.2735.58501,9802749  49% 100% 59% 92%
5.5Clojure #6 106.2934.98999,2241737  81% 69% 89% 66%
5.6Ruby JRuby #4 108.1399.062,186,060449  50% 27% 26% 7%
5.9Fortran Intel 113.76113.82192,3202238  1% 0% 0% 100%
6.0C# Mono #4 115.1135.47505,6001696  96% 76% 77% 76%
6.2C# Mono 118.76118.59507,5481420  1% 0% 100% 0%
6.7Go #2 129.4043.58270,9281531  88% 93% 60% 57%
7.1C# Mono #5 136.5241.14330,9722445  80% 80% 95% 79%
7.9Go 152.6345.14396,976980  97% 76% 90% 76%
8.5C# Mono #3 164.1150.07492,3681404  75% 95% 70% 90%
8.5Lisp SBCL #2 164.32164.40370,0921277  0% 17% 1% 84%
8.5Lisp SBCL #3 164.79164.93368,5761284  85% 16% 1% 0%
9.5Ruby #4 184.06187.14501,072449  6% 93% 0% 1%
9.8Clojure #4 189.5763.42994,8521944  76% 68% 79% 78%
11Racket 206.91206.991,421,872542  87% 4% 11% 1%
11Perl #2 221.40224.30464,944359  4% 31% 37% 29%
12Perl #4 228.7466.991,051,292472  75% 74% 96% 97%
12Perl 240.8465.841,012,832648  90% 93% 93% 91%
13Perl #3 255.0274.611,140,456507  96% 89% 83% 76%
14Dart 260.74258.83321,408595  43% 37% 1% 22%
15Python 3 #3 291.9475.78148,1921937  97% 97% 100% 97%
16PHP #4 5 min87.95246,8281060  92% 100% 80% 83%
18Erlang HiPE #3 5 min124.55980,820932  69% 81% 58% 77%
23Haskell GHC 7 min113.49264,5321693  99% 99% 99% 100%
26Python 3 #8 8 min167.03375,368647  87% 54% 97% 59%
30F# Mono 9 min247.50642,016701  64% 54% 51% 62%
36Ruby #2 11 min11 min158,504420  0% 1% 0% 100%
41Ruby 13 min238.96129,896637  97% 92% 73% 67%
41Ruby #3 13 min13 min164,540540  22% 28% 30% 21%
C# Mono #2 Failed1012
C++ g++ Make Error2106
Erlang HiPE Failed930
Erlang HiPE #2 Failed997
Go #3 Bad Output1399
Lisp SBCL Bad Output847
OCaml #3 Failed1789
OCaml Failed870
OCaml #2 Failed1205
Racket #2 Bad Output842
Racket #4 Bad Output881
Ruby JRuby #3 Timed Out1h 00 min540
Ruby JRuby #2 Failed421
Ruby JRuby Timed Out1h 00 min637
Scala #4 Failed1287
Scala #6 Failed1380
Scala Failed1625
Scala #2 Failed2080
"wrong" (different) algorithm / less comparable programs
0.5C++ g++ #5 9.383.0245,1243416
0.5Ada 2005 GNAT 9.854.57410,5806503
0.6C++ g++ #6 11.943.56134,5563415
0.7C gcc #4 13.183.73158,3922409
0.8Java  14.544.17176,8845211
0.8C gcc #8 15.945.87130,3882040
1.0Java  #6 19.3319.15161,4202115
2.3C# Mono #6 44.7415.90105,1401433
2.6C gcc #5 50.8014.76277,1482519
6.7Python 3 #2 128.5573.75329,280624

 k-nucleotide benchmark : Hashtable update and k-nucleotide strings

You can write your own program for this task and contribute to the benchmarks game by following these general instructions.

More specifically:

diff program output for this 250KB input file (generated with the fasta program N = 25000) with this output file to check your program is correct before contributing.

We are trying to show the performance of various programming language implementations - so we ask that contributed programs not only give the correct result, but also use the same algorithm to calculate that result.

We use FASTA files generated by the fasta benchmark as input for this benchmark. Note: the file may include both lowercase and uppercase codes.

Each program should

In practice, less brute-force would be used to calculate k-nucleotide frequencies, for example Virus Classification using k-nucleotide Frequencies and A Fast Algorithm for the Exhaustive Analysis of 12-Nucleotide-Long DNA Sequences. Applications to Human Genomics (105KB pdf).

Revised BSD license

  Home   Conclusions   License   Play