performance measurements

Each table row shows performance measurements for this C# Mono program with a particular command-line input value N.

 N  CPU secs Elapsed secs Memory KB Code B ≈ CPU Load
250,0001.621.6347,6521696  1% 0% 1% 99%
2,500,00010.9610.9767,6041696  0% 1% 1% 100%
25,000,000104.26104.31547,6121696  0% 1% 0% 100%

Read the ↓ make, command line, and program output logs to see how this program was run.

Read k-nucleotide benchmark to see what this program should do.

 notes

Mono JIT compiler version 3.4.1 (master/1b936ba Mon Apr 28 16:16:26 PDT 2014)
LLVM: yes(3.4svn-mono-mono/e656cac)
GC: sgen

 k-nucleotide C# Mono #4 program source code

/* The Computer Language Benchmarks Game
   http://benchmarksgame.alioth.debian.org/
 *
 * byte processing, C# 3.0 idioms, frame level paralellism by Robert F. Tobler
 */

using System;
using System.IO;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading;

public struct ByteString : IEquatable<ByteString>
{
    public byte[] Array;
    public int Start;
    public int Length;

    public ByteString(byte[] array, int start, int length)
    {
        Array = array; Start = start; Length = length;
    }
    
    public ByteString(string text)
    {
        Start = 0; Length = text.Length;
        Array = Encoding.ASCII.GetBytes(text);
    }
    
    public override int GetHashCode()
    {
        int hc = 0;
        for (int i = 0; i < Length; i++)
            hc = hc * 31 + Array[Start + i];
        return hc;
    }

    public bool Equals(ByteString other)
    {
        if (Length != other.Length) return false;
        for (int i = 0; i < Length; i++)
            if (Array[Start+i] != other.Array[other.Start+i]) return false;
        return true;
    }
    
    public override string ToString()
    {
        return Encoding.ASCII.GetString(Array, Start, Length);
    }
}

public static class Extensions
{
    public static byte[] GetBytes(this List<string> lines)
    {
        int count = lines.Aggregate(0, (cnt, str) => cnt + str.Length);
        var array = new byte[count];
        lines.Aggregate(0, (pos, str) => {
                Encoding.ASCII.GetBytes(str, 0, str.Length, array, pos);
                return pos + str. Length;
            });
        return array;
    }
}

public class Program
{
    public static int TaskCount;
    public static int Current = -1;
    public static KNucleotide[] kna;

    public static void Main(string[] args) {
        string line;
        StreamReader source = new StreamReader(Console.OpenStandardInput());
        var input = new List<string>();
    
        while ( (line = source.ReadLine() ) != null )
            if (line[0] == '>' && line.Substring(1, 5) == "THREE")
                break;
    
        while ( (line = source.ReadLine()) != null ) {
            char c = line[0];
            if (c == '>') break;
            if (c != ';') input.Add(line.ToUpper());
        }
    
        var lengths = new [] { 1, 2, 3, 4, 6, 12, 18 };
        
        TaskCount = lengths.Aggregate(0, (cnt, len) => cnt + len);
        kna = new KNucleotide[TaskCount];

        var bytes = input.GetBytes();        
        lengths.Aggregate(0, (cnt, len) => 
            {
                for (int i = 0; i < len; i++)
                    kna[cnt + i] = new KNucleotide(bytes, len, i); 
                return cnt + len;
            });

        var threads = new Thread[Environment.ProcessorCount];
        for (int i = 0; i < threads.Length; i++)
            (threads[i] = new Thread(CountFrequencies)).Start();

        foreach (var t in threads)
            t.Join();

        var seqs = new[] { null, null,
                "GGT", "GGTA", "GGTATT", "GGTATTTTAATT",
                "GGTATTTTAATTTATAGT"};

        int index = 0;
        lengths.Aggregate(0, (cnt, len) =>
            {
                if (len < 3)
                {
                    for (int i = 1; i < len; i++)
                        kna[cnt].AddFrequencies(kna[cnt+i]);
                    kna[cnt].WriteFrequencies();                    
                }
                else
                {
                    var fragment = seqs[index];
                    int freq = 0;
                    for (int i = 0; i < len; i++)
                        freq += kna[cnt + i].GetCount(fragment);
                    Console.WriteLine("{0}\t{1}", freq, fragment);
                }
                index++;
                return cnt + len;
            });
    }
    
    static void CountFrequencies()
    {
        int index;
        while ((index = Interlocked.Increment(ref Current)) < TaskCount)
            kna[index].KFrequency();
    }
    
}

public class KNucleotide {

    private class Count {
       public int V;
       public Count(int v) { V = v; }
    }

    private Dictionary<ByteString, Count> frequencies
        = new Dictionary<ByteString, Count>();
    private byte[] sequence;
    int length;
    int frame;

    public KNucleotide(byte[] s, int l, int f)
    {   
        sequence = s; length = l; frame = f;
    }

    public void AddFrequencies(KNucleotide other)
    {
        foreach(var kvp in other.frequencies)            
        {
            Count count;
            if (frequencies.TryGetValue(kvp.Key, out count))
                count.V += kvp.Value.V;
            else
                frequencies[kvp.Key] = kvp.Value;
        }
    }

    public void WriteFrequencies() {
        var items = new List<KeyValuePair<ByteString, Count>>(frequencies);
        items.Sort(SortByFrequencyAndCode);    
        double percent = 100.0 / (sequence.Length - length + 1);
        foreach (var item in items)
            Console.WriteLine("{0} {1:f3}",
                        item.Key.ToString(), item.Value.V * percent);
        Console.WriteLine();
    }

    public int GetCount(string fragment) {
        Count count;
        if (!frequencies.TryGetValue(new ByteString(fragment), out count))
            count = new Count(0);
        return count.V;
    }

    public void KFrequency() {
        int n = sequence.Length - length + 1;
        for (int i = frame; i < n; i += length) {
            var key = new ByteString(sequence, i, length);
            Count count;
            if (frequencies.TryGetValue(key, out count))
                count.V++;
            else
                frequencies[key] = new Count(1);
        }
    }

    int SortByFrequencyAndCode(
            KeyValuePair<ByteString, Count> i0,
            KeyValuePair<ByteString, Count> i1) {
        int order = i1.Value.V.CompareTo(i0.Value.V);
        if (order != 0) return order;
        return i0.Key.ToString().CompareTo(i1.Key.ToString());
    }
}

 make, command-line, and program output logs

Tue, 29 Apr 2014 04:09:41 GMT

MAKE:
mv knucleotide.csharp-4.csharp knucleotide.csharp-4.cs
/usr/local/bin/mcs -unsafe+ -optimize+ -platform:x86 -out:knucleotide.csharp-4.csharp_run knucleotide.csharp-4.cs
rm knucleotide.csharp-4.cs
0.28s to complete and log all make actions

COMMAND LINE:
/usr/local/bin/mono --llvm --gc=sgen knucleotide.csharp-4.csharp_run 0 < knucleotide-input25000000.txt

PROGRAM OUTPUT:
A 30.295
T 30.151
C 19.800
G 19.754

AA 9.177
TA 9.132
AT 9.131
TT 9.091
CA 6.002
AC 6.001
AG 5.987
GA 5.984
CT 5.971
TC 5.971
GT 5.957
TG 5.956
CC 3.917
GC 3.911
CG 3.909
GG 3.902

1471758	GGT
446535	GGTA
47336	GGTATT
893	GGTATTTTAATT
893	GGTATTTTAATTTATAGT

Revised BSD license

  Home   Conclusions   License   Play